Evaluation of Air Toxics Data to Assess Air Quality Orange County, FL

Regi Oommen
Eastern Research Group, Inc (ERG)
1600 Perimeter Park
Morrisville, NC 27560

November 8, 2006

Acknowledgements

- ERG
 - Jaime Hauser
 - Julie Swift
 - Heather Perez
 - Ginger Ehmann
 - Jody Tisano
- Orange County Environmental Protection Division (OCEPD)
 - Merle Kruger
 - Hamp Pridgen
 - Jodi Dittell

Overview of Presentation

- Introduction
- Policy-Relevant Questions/Methodology
- Results
- Summary/Conclusions

Orange County

- One of four counties in the Orlando MSA (> 1 million people)
- Prime destination for vacations (30 million annually)
- OCEPD
 - Created in 1968
 - Community and Environmental Services Department
 - www.orangecountyfl.net/cms/DEPT/CEsrvcs/epd/default.htm
- ERG is currently supporting carbonyl measurements under the UATMP for one site in Orange County (12-095-2002).

Policy-Relevant Questions

- What are typical pollutant concentrations in Orange County?
- Which pollutants contribute the greatest risk in Orange County on a short-term, intermediate-term, and chronic basis?
- What anthropogenic emission sources contribute to Orange County air quality?
- What is the role of meteorology on air quality in Orange County?

Methodology - Pollutants Coverage

	VOCs	Carbonyls	Metals
Method	TO-15	TO-11A	IO-3.5
# Pollutants	59	11	12
# HAPs	38	3	11

- 82 pollutants
 - 52 HAPs

Methodology - Sites of Interest

AQS ID	Air Toxics	Criteria Pollutants	Land Use	Location Setting	Daily Traffic
12-095-0004		X	Residential	Rural	500
12-095-0008		X	Residential	Suburban	36,000
12-095-1004	X	X	Commercial	Suburban	60,000
12-095-1005		X	Commercial	Urban/	55,000
				City Center	
12-095-2002	X	X	Commercial	Urban/	59,000
				City Center	

Methodology - Sites of Interest

Methodology - Time Period of Interest

Sampling Days

Database Compilation

- Relational database using Microsoft Access
- Ambient monitoring data sources:
 - Metals: OCEPD
 - VOCs: EPA's Air Quality Subsystem (AQS)
 - Carbonyls: AQS (under UATMP)
 - Criteria Pollutants: AQS
- Emissions data: 2002 National Emissions Inventory (NEI)
 - Stationary (point and area nonpoint)
 - Mobile (onroad and nonroad)

Database Compilation

- Meteorological data sources:
 - National Weather Service: hourly surface observations
 - HYSPLIT back trajectory data from NOAA
- National-scale Air Toxics Assessment (NATA) data
 - 1999 census tract modeled concentration data
 - HAPs only
- EPA's Air Toxics Website MACT information

Results – typical concentrations?

- Daily average:
 - Average concentration of all detects
 - Valid average = 75% detects
- Seasonal average:
 - Seasons: Winter (Dec.-Feb.); Spring (Mar.-May); Summer (Jun.-Aug.); Fall (Sep.-Nov.)
 - Minimum of 7 detects within a season
 - Substitute zeroes for non-detects
 - Average of all detects and zero-replaced non-detects

Results – typical concentrations?

- Annual average:
 - Sampling must begin no later than February and end no earlier than November
 - Substitute zeroes for non-detects
 - Average of all detects and zero-replaced non-detects

Results: Metals – daily average

Results: Carbonyls – daily average

Results: VOCs – daily average

Results - Evaluating Risk

- <u>Risk Screening</u>: Guidance from EPA Region 4 document: "A Preliminary Risk-Based Screening Approach for Air Toxics"
- <u>Acute Risk</u>: compare ATSDR and CALEPA acute risk factors against daily measurements
- <u>Intermediate Risk</u>: compare ATSDR and CALEPA intermediate-term risk factors against seasonal averages
- Chronic Risk:
 - Compared annual average concentrations with 1999 NATA modeled concentrations
 - Computed EPA cancer and noncancer risk using URE and RfC factors

Results – Risk Screening

- Methodology used in the 2005 UATMP Report. Modification of EPA Region 4 Risk Screening Guidance document
- Daily concentrations were compared to a risk screening factor
- If a concentration was greater than its risk screening factor, then the concentration "failed the screen"
- A total of 967 of 1,872 applicable concentrations (51.66%) failed their screens.

Results – Risk Screening

The pollutants contributing to the Top 95% of the total failed screens were identified as Pollutants Of Interest:

- Acetaldehyde (155 failed screens)*
- Acrylonitrile (69)
- Arsenic (63)
- Benzene (69)*
- 1,3-Butadiene (69)*
- Carbon tetrachloride (69)*

- Chromium (115)
- *p*-Dichlorobenzene (67)
- Formaldehyde (153)
- Nickel (56)
- Tetrachloroethylene (46)

* Pollutant failed 100% of its screen

Results – Non-chronic Risk

- No single concentration exceeded its acute risk factor
- No <u>seasonal</u> concentration exceeded its intermediate-term risk factor
- However, acrolein was a pollutant not reported under TO-15. This pollutant often exceeded these risk factors in the 2005 UATMP.

Results – Chronic Risk, NATA

- Orange County 1999 NATA Risk:
 - Cancer risk (all HAPs) = 43.7 in-a-million (rank 137)
 - Respiratory noncancer risk = 9.37 (rank 52)
 - Primary emission sources contributing to risk are mobile onroad sources and background sources
- Census tract with greatest cancer risk (80.3 in-a-million) does not contain an air toxics monitor.
- The majority of 1999 NATA-modeled concentrations were within an order of magnitude of the study's annual average concentrations

Results – Chronic Risk, NATA

1999 NATA Modeled Conc.	Annual Average Conc.
1. Toluene $(5.50 \mu g/m^3)$	1. Formaldehyde (3.25 μg/m ³)
2. Xylenes (3.55 μ g/m ³)	2. Acetaldehyde (2.00 μg/m³)
3. Benzene (2.26 μg/m ³)	3. Toluene $(1.80 \mu g/m^3)$
4. Acetaldehyde (1.99 μg/m³)	4. Xylenes (1.58 μg/m ³)
5. Formaldehyde (1.99 μg/m³)	5. Chloromethane (1.35 μg/m³)

- Possible under-estimation of acrylonitrile concentration
 - Calculated cancer risk = 18.36 in-a-million (highest)
 - Annual average concentration = $0.27 \mu g/m^3$
 - NATA modeled concentration = $0.00047 \mu g/m^3$
- Highest calculated noncancer HQ = 0.33 (formaldehyde)

Results – Emission Sources

37%: Surface coating

33%: Consumer/Commercial Products

Results – Emission Sources

Pollutants of Interest

Results – Concentration vs. Emissions

Pollutant	Study Average Concentration (µg/m³)	Concentration Rank	Total Emissions (tons)	Emissions Rank
Formaldehyde	3.07	1	380	5
Acetaldehyde	1.99	2	134	8
Toluene	1.76	3	2,885	1
Xylenes (total)	1.52	4	1,960	2
Chloromethane	1.33	5	0.7	16

• Benzene

- Emissions rank = 3^{rd} (1,069 tpy)
- Concentration rank = 6^{th} (0.79 μ g/m³)

Ethylbenzene

- Emissions rank = 4^{th} (472 tpy)
- Concentration rank = 12^{th} (0.24 μ g/m³)

Results – Role of Meteorology

Case Study: Nickel Concentrations

Statistic	Value	
	(ng/m^3)	
Risk Screening Value	2.1	
Ave. Daily Conc.	2.3 ± 0.3	
Max. Conc.	12.6	
Orange County Emissions	0.5 tons	

Results – Pollution Rose

Nickel Pollution Rose

Results – Back Trajectory

What are typical pollutant concentrations in Orange County?

By mass concentration, Top 3 Daily Averages:

- Metals: lead, manganese, and nickel
- VOCs: dichlorofluoromethane, toluene, and chloromethane
- Carbonyls: formaldehyde, acetaldehyde, and acetone

Which pollutants contribute the greatest risk in Orange County on a short-term, intermediate-term, and chronic basis?

- Eleven pollutants were identified as a pollutant of interest using a risk screening methodology
- No short-term or intermediate-term risk factors were exceeded (however, acrolein was not reported)
- Most pollutant annual average concentrations were within an order of magnitude to the NATA modeled concentrations
 - Highest calculated cancer risk = 18.36 in-a-million (acrylonitrile)
 - Highest calculated noncancer HQ = 0.33 (formaldehyde)

What anthropogenic emission sources contribute to Orange County air quality?

- Mobile onroad HAP emissions are the highest component in the county, with light-duty gasoline vehicles as the highest source category
- The presence of several coal-fired utility boilers and boat and plastics/resins manufacturing facilities are the largest point sources in the county

What is the role of meteorology on air quality in Orange County?

- A case study for the maximum nickel concentration was presented
 - Typical concentrations were about 2 ng/m³
 - The maximum concentration (12.6 ng/m³) occurred on 8/31/03 (> six times than typical concentration)
 - The pollution rose for nickel showed highest concentrations when the wind was from the east of Orange County
 - A back trajectory for 8/31/03 was overlaid onto a nickel emissions source map. It appears as if the air passed by several nickel emission sources prior to reaching Orange County.

Questions?

Regi Oommen regi.oommen@erg.com 919-468-7829

